The Mathematics of Honeycomb: Part III
In the first two parts of the article, I have given a historical review of the honeycomb problem and a calculus-based technique to compute the honeycomb rhombic angle . In this article, I will try to give a crude analysis on the results we obtained in Part II . For a closed curve in two-dimensional space, there exists an inequality to govern its perimeter \(L\) and area \(A\): $$A \le \tfrac{1}{4\pi}L^2$$ This inequality is called the isoperimetric inequality . It simply means that the ratio of \(A/L^2\) cannot be greater than \(\frac{1}{4\pi}\). This result can be generalized to three-dimensional space to give: $$V \le \tfrac{1}{6\sqrt{\pi}}S^{3/2}$$ This shows that the theoretical maximum \(V/S^{3/2}\) (when you have the least surface for a given volume) is \(\frac{1}{6\sqrt{\pi}} = 0.0940\). For honeycomb cells, the ratio of \(V\) to \(S^{3/2}\) is: $$\frac{V_{\rm honeycomb}}{(S_{\rm honeycomb})^{3/2}} = \frac{\frac{3\sqrt{3}}{2}a^2 b}{\left(6ab + \frac{6}{\sqrt{8}}a^2...